

Wize Protocol and Products: A technical brief

Introduction

- Some RF basics
- LPWAN concept
- RF European regulations
- The Wize Alliance
- Wize system architecture
- Wize infrastructures and operators
- Synthesis : Wize vs LoRaWAN, NB-IoT or Sigfox
- Q&A

- Agenda
- Targets and organization of this webinar
 - Presenters

Spare for Q&A

- Wize protocol in depth
- Designing a Wize-compatible device

Introduction: Targets and organization of this webinar

- 1 hours to discover Wize **technology and ecosystem**
- Based on technology analysis
- As open-minded and independant as possible
 - To understand which use cases for Wize
 - To understand what is the actual Wize offer to date
 - To understand how to **develop a Wize product**
 - To understand how to influence the Wize standard

Introduction: Presenters

Alain Désandré Head of technical committee Head of Smart Solutions at GRDF

- Introduction ۲
- iction Some RF basics ۲
- LPWAN concept •
- **RF** European regulations ۲
- The Wize Alliance \bullet
- Wize system architecture
- Wize infrastructures and operators •
- Synthesis : Wize vs LoRaWAN, NB-IoT or Sigfox •
- Q&A ۲

- Free space propagation
- Penetration losses
- Sensitivy and energy vs bit rate •

Spare for Q&A

- Wize protocol in depth •
- Designing a Wize-compatible device •

Some RF basics: Free space propagation (1/2)

Some RF basics: Free space propagation (2/2)

- So: 14dB better path loss at 169MHz compared to 868MHz
- Same gain in open field or with polarisation or multipath losses

		Path Io	oss (dB)	
Distance (m)	169MHz, free space (n=2)	169MHz, urban (n=3)	868MHz, free space (n=2)	868MHz, urban (n=3)
1	17	17	31	31
10	37	47	51	61
50	51	68	65	82
100	57	77	71	91
1000	77	107	91	121

140 120 Path loss (dB) = $x + 20 \log (F)$ 100 169MHz, free space 80 (n-2)20 log (868/169) = 14,2 dB 60 868MHz free snace (n-2)40 868MHz, urban (n=3) 20 10 100 1000

• Downside: the antenna is 5 times larger for the same performance...

Some RF basics: Penetration losses

- Penetration losses: Roughly proportional to the frequency
- 12cm of concrete is 1λ at 2.4GHz, 0.35 λ at 868Mhz but only 0.07 λ at 169MHz...

Penetration loss into residential buildings

Penetration loss (order of magnitude)	169MHz	868MHz
Light indoor	8dB	12dB
Deep indoor (meters)	25 d B	35dB

Frequency divided by 2 => Penetration losses reduced by 5-6dB

Key advantage of low frequency bands for deep indoor

Some RF basics: Sensitivity and energy vs bit rate

• On the receiver side, a fundamental result, true for any receiver:

- Reducing the bit rate always improve the sensitity: bit rate / 4 => +6dB => range x 2
- But increases the transmission duration, so the battery usage: bit rate / 2 => energy x 2

Always compare two RF solutions for the same energy consumption

- Introduction ullet
- Some RF basics ۲ •
- LPWAN concept
- **RF** European regulations ۲
- The Wize Alliance \bullet
- Wize system architecture ٠
- Wize infrastructures and operators ۲
- Synthesis : Wize vs LoRaWAN, NB-IoT or Sigfox •
- Q&A ۲

- What is a LPWAN? ۲
- Key applications ۲
- Private vs operator / Licensed vs unlicensed
 - An overview of the competitive landscape ٠

- Spare for Q&A
- Wize protocol in depth •
- Designing a Wize-compatible device •

LPWAN concept: What is a LPWAN?

© 2020 - Copyright Wize Alliance & Alciom- All rights reserved

LPWAN concept: Key applications

LPWAN concept: Private vs operator / Licensed vs unlicensed

© 2020 - Copyright Wize Alliance & Alciom- All rights reserved

LPWAN concept: An overview of the competitive landscape

- Introduction
- Some RF basics
- LPWAN concept
- RF European regulations
- The Wize Alliance
- Wize system architecture
- Wize protocol in depth
- Synthesis : Wize vs LoRaWAN, NB-IoT or Sigfox
- Q&A

- A look at REC/ERC/70-03...
- The 169MHz band

Spare for Q&A

- Wize protocol in depth
- Designing a Wize-compatible device

RF European regulation: A look at REC/ERC/7003

	ANNEX 1: NON-SPECIFIC SHORT RANGE DEVICES	7	169, 433, 878	3,
	ANNEX 2: TRACKING, TRACING AND DATA AQUISITION	12 🔶	169	
Relating to the use of Short Range Devices (SRD)	ANNEX 3: WIDEBAND DATA TRANSMISSION SYSTEMS	. 15		
Turnung 4007	ANNEX 4: RAILWAY APPLICATIONS	. 17		
Subsequent amendments	ANNEX 5: TRANSPORT AND TRAFFIC TELEMATICS (TTT)	. 19		
7 June 2019	ANNEX 6: RADIODETERMINATION APPLICATIONS	22		
Please Note	ANNEX 7: ALARMS	. 25		
Implementation Status page 44	ANNEX 8: MODEL CONTROL	26		
	ANNEX 9: INDUCTIVE APPLICATIONS	27		
	ANNEX 10: RADIO MICROPHONE APPLICATIONS INCLUDING ASSISTIVE LISTENING DEVICES (AL WIRELESS AUDIO AND MULTIMEDIA STREAMING SYSTEMS	.D), . 31		
	ANNEX 11: RADIO FREQUENCY IDENTIFICATION APPLICATIONS	35		
	ANNEX 12: ACTIVE MEDICAL IMPLANTS AND THEIR ASSOCIATED PERIPHERALS	. 38		
	ANNEX 13: MEDICAL DATA ACQUISITION	39		

RF European regulation: The 169MHz band

• Open and license-free frequency since 2003 (e. g. Hermès band reserved for pagers)

f1	169.4-169.475 MHz	500 mW e.r.p.	≤ 1% duty cycle	≤ 50 kHz	ECC/DEC/(05)02
		ANNEX 2: TRACKING, TRAC	CING AND DATA AQUISI	TION	
b	169.4-169.475 MHz	500 mW e.r.p.	≤ 10% duty cycle	≤ 50 kHz	ECC/DEC/(05)02

ANNEX 1: NON-SPECIFIC SHORT RANGE DEVICES

Wize can be used for any application but with a different duty cycle limit :

- Up to 10 % duty cycle for « annex 2 » devices (*), up to 1 % for other applications
- (*): « Meter reading, sensors (water, gas, meteoreology, pollution...) and actuators (street lights...) »
- Available in all European countries (except Russia, Georgia, Bielo-R.):

Annexes to ERC/REC 70-03	ALB	AND	AUT	AZE	BEL	쁌	BLR	BUL	CVA	CYP	CZE	•	DNK		EST		Ē	e GEO	GRC	HNG	Þ	HRV	-	IRL	181		l k		MCO	MDA	MKD				POR	ROU	RUS	\$	SMR	SRB		SVN NAS	TUR	UKR
Annex b: 169.4-169.475 MHz ECC/DEC/(05)02	Υ	Y	Υ		Y	Y.	N	Y	Y	Y	Y	Y	Y	Y	ΥY	()	YY	r N	Y	Y	Y	Y	Y	Y	Y	YY	Υ	Y	Y	Y	Υ	YY	()	Y	Y	Υ	Ν	Υ	Y	YI	YY	rΥ	Y	U

• 169MHz band or close bands are also available in several countries out of Europe

- Introduction
- Some RF basics
- LPWAN concept
- RF European regulations
- The Wize Alliance
- Wize system architecture
- Wize infrastructures and operators
- Synthesis : Wize vs LoRaWAN, NB-IoT or Sigfox
- Q&A

- History and founders
- Members
- Working groups
- Membership
- Deliverables

Spare for Q&A

- Wize protocol in depth
- Designing a Wize-compatible device

The Wize Alliance: History and founders

The Wize Alliance: Members

Start-up & Academics

The Wize Alliance: Working groups

Executive Board

- Sponsor level
- Board do not produce any work, board only undertake decision and validation

Strategic Committee

Executive Members

- develop and submit Alliance Roadmap to Executive Board at both an organizational and technical level
- develop and maintain long-range and annual strategic plans
- propose and validate Association accession to institutional, professional or advisory organisations
- appoint Association representatives to each institutional, professional or advisory organisations

Executive Members + Working Group Chairs + Experts (on specific request nominated by the Strategic Committee)

Communication Working Group	Technical Working Group	Development Working Group
 dedicated to marketing activities, promotion of WIZE technology and communication activities within and outside the alliance developing an Alliance marketing plan; driving education, outreach, and awareness programs managing communication to Members developing marketing materials for the event and for the alliance 	 dedicated to maintain the detailed specifications of the standard and to specify tests gathering, defining, and prioritizing requirements for Deliverables creating a working plan to accomplish the technical objectives of the Alliance organising certification and testing process 	 dedicated to business development of the technology, recruitment of new projects, new applications and upgrades defining the timing and form of ecosystem expansion tooling and implementation, monitoring and surveillance over projects
1 chair + experts	1 chair + experts	1 chair + experts

The Wize Alliance: Membership

Rights	Executive	Active	Regular
Eligibility for a seat on the Executive Board	•		
Initiate Working Group	•		
Chair Working Group	•	•	•
Participate in General Assembly	•	•	•
Vote in general assembly	•	•	•
Submit Deliverables for final approval by the Executive Board	•		
Contribute and access to draft Deliverables	•	•	
Access to Wize final Deliverables	•	•	•
Have certified Wize compliant products	•	•	•
Participate in press articles and interviews regarding the Alliance	•	•	•
Access private area of the website dedicated to Members	•	•	•
Receive Alliance's communications	•	•	•
Per year :	30K€	10K€	3K€('

(*) Free for institutional and startups

© 2020 - Copyright Wize Alliance & Alciom- All rights reserved

The Wize Alliance: Deliverables

V1.1

Version	Modifications	Date
1.0	Initial version	22/09/2017
1.1	 Evolution of the Wize protocol specification to facilitate support for more countries and applications : Frequency-band-agnostic main specification, Creation of a "Regional Parameters" document Improved support for multiple application layers (L6App) Improved support for roaming (L6Netwld) Specifications for each application layer moved to separate documents Minor clarifications and improvements Nota : Due to potential system impacts, alignment with EN13757-4:2018 version is deferred to next version	07/06/2019

+

© 2020 - Copyright Wize Alliance & Alciom- All rights reserved

- Introduction ullet
- Some RF basics \bullet
- LPWAN concept •
- **RF** European regulations ۲
- The Wize Alliance ullet
- e Alliance Wize system architecture •
- Wize infrastructures and operators ullet
- Synthesis : Wize vs LoRaWAN, NB-IoT or Sigfox •
- Q&A ۲

- EN13757-4 smart metering standard ۲
- Wize main features ٠
- The big picture
- Message flows ۲
- Wize vs OSI model ۲
 - Spare for Q&A
 - Wize protocol in depth •
 - Designing a Wize-compatible device •

Wize system architecture: EN13757-4 smart metering standard

Wize vistem architecture: Wize main features

Wize vistem architecture: The big picture

^{© 2020 -} Copyright Wize Alliance & Alciom- All rights reserved

Wize system architecture: Message flows (1/2)

Upstream messages :

- A device sends a message on any channel & bit rate
- One or more gateway receive it, check it,
- ... and forward it to the head system for processing

Downstream messages :

- After each transmission, the device listen to a given channel
- The head system check if a downlink message is ready...
- ... and send it to one gateway for transmission

Multicast messages :

- A specific multicast mechanism is also specified by Wize
- Used for other the air firmware upgrade
- Based on preprogrammed rendez-vous

Wize system architecture: Message flows (2/2)

- Timings precisely defined for the lowest possible power consumption on device side
- If no downlink message :

• With downlink message :

© 2020 - Copyright Wize Alliance & Alciom- All rights reserved

Wize vs OSI model (2/2)

^{© 2020 -} Copyright Wize Alliance & Alciom- All rights reserved

Wize System architecture : Security (1/2)

- Multi-layer security protocol
- Minimize gateway complexity and key dissemination, while keeping full security

- Up to 14 Kenc preprogrammed in a device (and shared with head end)
- AES128 upgradable to AES256

 $^{\odot}$ 2020 - Copyright Wize Alliance & Alciom- All rights reserved

- Introduction
- Some RF basics
- LPWAN concept
- RF European regulations
- The Wize Alliance
- Wize system architecture
- Wize infrastructures and operators
- Synthesis : Wize vs LoRaWAN, NB-IoT or Sigfox
- Q&A

- Carrier-grade Wize equipments
- Single-channel Wize gateways
- Wize operators & network models
- Wize operators & net
 GRDF Wize network
 - SUEZ Wize networks
 - A rollout example : Bordeaux M. Energies

Spare for Q&A

- Wize protocol in depth
- Designing a Wize-compatible device

Wize vinfrastructures and operators: Carrier grade Wize equipments

- Carrier-grade Wize concentrators, LAN modem and head-ends developped for SUEZ and GRDF networks
- One concentrator = Up to 2 CPU, 4 LAN Modem (1 internal, 3 remote) and cellular connectivity
- Manufactured by SagemCom and Kerlink on behalf of GRDF & SUEZ, LAN modem design by ALCIOM

Equipements and patended technology available through transfer agreement from SUEZ and GRDF

Wize infrastructures and operators: Single channel Wize gateways

- Single-channel Wize gateways possible for small private networks and experiments
- Single channel / single modulation (vs 6 channels x 3 modulations), limited feature set and performance
- Supported by RC1701-Wize module (Radiocraft)
- Example of integrated solution for experiments/small trials : Wize-to-Wifi gateway (AllWize):

Wize infrastructures and operators: Wize operators & network models

Already extensive Wize Roll-outs

+ 10 million
devices deployed

• Flexible network model

Private network

Gateways = Customer's property + Own operation

Hybrid network

Gateways = Customer's property + Operation by a Wize operator

Operated network

Gateways = operator's property + Operation by a Wize operator
Wize vinfrastructures and operators: GRDF Wize network

Wize vinfrastructures and operators: Suez Wize networks (1/2)

Wize infrastructures and operators: Suez Wize networks (2/2)

• SUEZ offer : Connectivity service alone, or connectivity + value added services

• What if there is no SUEZ Wize network in your area?

Wize vinfrastructures and operators: Bordeaux Métropole Energies (1/3)

- An example of a local Wize network : Bordeaux Métropole Energies
- Holding including REGAZ, Gaz distribution operator for 46 cities around Bordeaux (France)

Wize vinfrastructures and operators: Bordeaux Métropole Energies (2/3)

• What was is the actual schedule of Bordeaux Metropole Energies project ?

One year roll-out to date

• Of course, just an example. Planning & roll-out phases remain specific to each project

© 2020 - Copyright Wize Alliance & Alciom- All rights reserved

Wize vinfrastructures and operators: Bordeaux Métropole Energies (3/3)

• Roll-out status and actual field experience ?

Overall roll-out targets

- ➤ 46 cities
- > 210 000 meters (30 000/year)
- ➢ 80 to 100 gateways

Where are we, April 2020 ?

- ✓ 40 gateways installed (40%)
- ✓ 47 570 DATAGAZ meters installed
- ✓ 45 281 DATAGAZ meters well received !

Agenda

- Introduction
- Some RF basics
- LPWAN concept
- RF European regulations
- The Wize Alliance
- Wize system architecture
- Wize infrastructures and operators
- Synthesis : Wize vs LoRaWAN, NB-IoT or Sigfox
- Q&A

- Link budget
- Energy
- Key differentiators
- Which use case for Wize ?

- A tentative comparative analysis of the respective link budgets
- Figures could of course be discussed, just orders of magnitude for typical metering projects and typical chips

	LoRa	LoRaWAN		SIGFOX		Wize		NB-IoT
	Uplink	Downlink		Uplink	Downlink	Uplink	Downlink	Balanced
Tx Power	13	23		13	23	27	24	
Sensitivity	-141	-137		-142	-123	-126	-119	
bit rate	300	300		100	600	2400	2400	10000
Link budget	154	160		155	146	153	143	160
Device antenna gain	1	1		1	1	-6	<mark>-6</mark>	1
Gateway antenna gain	4	4		4	4	3	3	8
Radiated link budget	159	165		160	151	150	140	169
Frequency correction	0	0		0	0	14	14	0
Free space performance	159	165		160	151	164	154	169
Typical indoor penetration loss	-35	-35		-35	-35	-25	-25	-35
Indoor performance	124	130		125	116	139	129	134

- In a nutshell : All solutions are more or less equivalent outdoor (at least uplink)...
- ... but Wize has the best uplink link budget for indoor (5 to 14dB better)
- Even better for deep indoor, as well as with advanced Wize modulations (not currently in the standard)

Wize vs LoRaWAN, NB-IoT or Sigfox: Link budget (2/2)

- What means a 6dB or 12dB difference?
- +6dB = Twice the range = 4 times less concentrators = Nearly 4 times lower OPEX...
- +12dB = 16 times lower OPEX...

6dB difference

© 2020 - Copyright Wize Alliance & Alciom- All rights reserved

Wize vs LoRaWAN, NB-IoT or Sigfox: Energy

- What about energy usage for a typical device?
- Assumption : 15 bytes transmitted + 6 bytes in EN13757 header, and downlink reception capability

	LoRaWAN	SIGFOX		Wize	NB-loT
Message length (bytes)	21	21		15	21
Max message length (bytes)	51	12		121	N/A
Number of messages	1	2		1	1
Overhead per message (byte)	18	8		30	N/A
Total transmitted (bytes)	39	29	1	45	N/A
bit rate (bps/s)	300	100	1	2400	10000
Transmit duration (s)	1,04	2,32		0,15	
Repetion factor	1	3		1	
Total transmit duration (s)	1,04	6,96		0,15	
Transmit current (mA)	33	33		300	
Transmit energy (mA.s)	34,32	229,68		45,00	
Reception window (s)	0,16	20		0,02	
Receive current (mA)	15	15		15	
Receive energy (mA.s)	2,40	300,00		0,30	
Total energy (mA.s)	36,72	529,68		45,30	100 to 600

- Energy side, LoRaWAN (SF12) and Wize (2400bps) are close
- NB-IoT 2 to 15 times worst (module and network dependant, would be better for larger frames)
- Sigfox significantly worst in this specific use case (more than 12 bytes, and systematic downlink capability)

Wize vs LoRaWAN, NB-IoT or Sigfox: Key differentiators

• More globally and for a smart metering use case (could of course be discussed!):

	LoRaWAN	SIGFOX	Wize	NB-IoT
Outdoor link budget	3	3	3	3
Deep indoor link budget	2	2	3	2
Bidirectional link budget	3	1	2	3
Low energy for metering	3	1	3	1
OTA upgrade support	2	1	3	3
Security	2	1	2	3
Open and standardized	2	3	3	3
Low device cost	2	3	2	1
Small size device support	3	3	2	3
In-band noise	1	1	2	3
Network capacity	1	2	2	3
Worldwide coverage	2	2	1	2
Private network support	3	2	3	1

- In a nutshell, Wize best choice for deep indoor, low power, OTA compatible, all-size networks
- But not for very small devices or worldwide roaming (to date...)

Wize vs LoRaWAN, NB-IoT or Sigfox: Which use case for Wize?

• Deep indoor, long range, low power, not too small, flexible networks, low cost : Plenty of good use cases!

 $\ensuremath{^\odot}$ 2020 - Copyright Wize Alliance & Alciom- All rights reserved

Agenda

- Introduction
- Some RF basics
- LPWAN concept
- RF European regulations
- The Wize Alliance
- Wize system architecture
- Wize infrastructures and operators
- Synthesis : Wize vs LoRaWAN, NB-IoT or Sigfox
 Q&A

Ask your questions in the chat area of Team

......................

Agenda

- Introduction
- Some RF basics
- LPWAN concept
- RF European regulations
- The Wize Alliance
- Wize system architecture
- Wize protocol in depth
- Designing a Wize-compatible device
- Wize infrastructures and operators
- Synthesis : Wize vs LoRaWAN, NB-IoT or Sigfox
- Q&A

- Modulations and RF performances
- Link layer
- Presentation layer
- Security
- Application layers
- Commissionning support
- Time and frequency management
- Adaptative power and modulation control
- OTA download
- Wize versions & Future works

Wize protocol in depth: Modulations and RF performances (1/3)

- Wize modulations: Defined by EN13757-4 standard
- 6 channels, 3 modulation formats: Fine-tuning of link budget & network capacity

Frequency channel number	Central frequency
100	169.406250 MHz
110	169.418750 MHz
120	169.431250 MHz
130	169.443750 MHz
140	169.456250 MHz
150	169.468750 MHz

Physical layer	Description
PHY-WM2400	Physical layer using mode EN13757-4 N2a-f at 2400bps
PHY-WM4800	Physical layer using mode EN13757-4 N2a-f at 4800bps
PHY-HSPEED	High speed specific physical layer for very densely populated zones, using a 12.5KHz channel similar to modes EN13757-3 N2a-f

• Typical conducted performances when using carrier grade equipments:

© 2020 - Copyright Wize Alliance & Alciom- All rights reserved

Wize protocol in depth: Modulations and RF performances (2/3)

• What means « Path loss = 146dB »? Remember:

Path loss (dB) = 32,4 + 20 log (F/1GHz) + 20 log (d/1m) + obstacles, polarisation, fading,...

- Hypothesis: device antenna gain = -8dBi, gateway antenna gain = +1dBi
- Open field? Pathloss = 146dB => Bidirectionnal link, up to 1250km (theoretical)
- Indoor? Add 25dB penetration loss and 7dB polarisation/fading losses: Still up to 30km

Wize protocol in depth: Modulations and RF performances (3/3)

• Field tests do prove it! Example with GRDF network in Le Havre, coverage of a single concentrator:

Wize protocol in depth: Link layer

^{© 2020 -} Copyright Wize Alliance & Alciom- All rights reserved

Wize protocol in depth: Presentation layer (L6)

Wize protocol in depth: Security

Wize protocol in depth: Application layers (1/3)

- Application layer = format and semantic of the actual data
- Three mandatory application layers : APP-INSTALL, APP-ADMIN, APP-DOWNLOAD
- Optional application-oriented layer. Gaz and water meters defined by Wize Alliance, but open

APP-INSTALL	Connectivity test messages format, i.e. for the INSTPING and INSTPONG flows Device configuration and	See section 4.3	0x01		T INSTPONG
APP-ADMIN	Device configuration and	See section 4.4	-		
	monitoring messages format		0x02		COMMAND_READ COMMAND_WRIT
APP- DOWNLOAD	Software download messages format, i.e. for the DOWNLOAD flow	See section 4.5	N/A (*)		COMMAND_WRIT COMMAND_ANNE COMMAND_EXECI
	Reserved for future use		0x03 to 0x0F		
	Application layers dedicated	See Wize Alliance web site for the list of currently	0x10 to		Application layer
	and/or format of applicative message	specified specific application layers	(allocated by Wize Alliance)		APP-METER-GAS
	Can be used freely for experimental devices or proprietary application-level		0xFE		
	protocols. Reserved for future use		0xFF		APP-METER-WTR
		APP- DOWNLOAD Software download messages format, i.e. for the DOWNLOAD flow Reserved for the DOWNLOAD flow Reserved for future use Application layers dedicated to a given type of device and/or format of applicative message Can be used freely for experimental devices or proprietary application-level protocols.	APP- DOWNLOAD Software download messages format, i.e. for the DOWNLOAD flow See section 4.5 Reserved for future use Reserved for future use See Wize Alliance web site for the list of currently specified specific application layers Can be used freely for experimental devices or proprietary application-level protocols. See Wize Alliance web site for the list of currently specified specific application layers	APP- DOWNLOAD Software download messages format, i.e. for the DOWNLOAD flow See section 4.5 N/A (*) Reserved for future use 0x03 to 0x0F 0x03 to 0x0F 0x10 to 0xFD (allocated by Wize Alliance) 0x10 to 0xFD Can be used freely for experimental devices or proprietary application-level protocols. Can be used for future use 0xFE Reserved for future use 0xFE 0xFF	APP- DOWNLOAD Software download messages format, i.e. for the DOWNLOAD flow See section 4.5 N/A (*) Reserved for future use 0x03 to 0x0F Application layers dedicated to a given type of device and/or format of applicative message See Wize Alliance web site for the list of currently specified specific application layers 0x10 to 0xFD (allocated by Wize Alliance) Can be used freely for experimental devices or proprietary application-level protocols. 0xFE Reserved for future use 0xFF

COMMON APPLICATION LAYERS

© 2020 - Copyright Wize Alliance & Alciom- All rights reserved

PARAMETERS **EPARAMETERS** EKEY DOWNLOAD INSTPING

Application layer	Description
APP-METER-GAS	Specific application layer for gaz smart meters
APP-METER-WTR	Specific application layer for water smart meters

Wize protocol in depth: Application layers (2/3)

- APP-ADMIN: A very flexible mechanism, used in particular for device configuration
- Mandatory parameter dictionnary defined by Wize, extendable for any device needs

Wize protocol in depth: Application layers (3/3)

• See « Common Application Layers » for detailed specification of these messages and dictionnary

Id	Parameter name	Description	Size (byte s)	Mo de	L/R	Coding	Default value
01	VERS_HW_TRX	Hardware version number of the device (or transceiver for a remote module)	2	R	L/R	Byte 1 : Version, Byte 2 : Revision	As per MANUFAC TURER
02	VERS FW TRX	Software version number run by the device (or transceiver for a remote module)	2	R	L/R	Byte 1 : Version, Byte 2 : Revision	As per MANUFAC TURER
03	DATEHOUR_LAST_ UPDATE	Date/time of the last successful firmware download	4	R	IJR	EPOCH encoded on 32 bits and corresponding to the number of seconds since 1st January 2013 at 00:00: MSBs first (big endian)	00000000
08	RF UPLINK CHANN	Frequency channel to be used for all uplink message transmissions	1	R/ W	L/R	See Regional Parameters document in the corresponding frequency band for parameter value.	See Regional Parameter s document.
09	RF_DOWNLINK_CH ANNEL	Frequency channel to be used for all message receptions (except firmware download)	1	R/ W	L/R	See Regional Parameters document in the corresponding frequency band for parameter value.	See Regional Parameter s document.
0A	RF_UPLINK_MOD	Modulation to be used for all uplink message transmissions	1	R/ W	L/R	See Regional Parameters document in the corresponding frequency band for parameter value.	See Regional Parameter S document.

© 2020 - Copyright Wize Alliance & Alciom- All rights reserved

Wize protocol in depth: Commissionning support

- A mandatory application layer for standardized installation and commissionning : APP_INSTALL
- Managed by the concentrator, no involvment of the head end, therefore authentification but no encryption

INSTPING

Byte	Description	Comments
1	L7DownChannel	Frequency channel to be used by the gateway for the response (same coding as RF_UPLINK_CHANNEL parameter, see Regional Parameters document)
2	L7DownMod	Modulation to be used by the gateway for the response (same coding as RF_UPLINK_MOD parameter, see Regional Parameters document)
3	L7PingRxDelay	Value of the current PING_RX_DELAY parameter of the device, see <u>APPENDIX A</u> .
4	L7PingRxLength	Value of the current PING RX LENGTH parameter of the device, see <u>APPENDIX A</u> .

Byte	Description	Comments
1	L7ConcentId	Gateway numerical identification: same as the ID
3		Used in WAN messages. MSBs first
6		
7	L7ModemId	Numerical identification of the LAN modem that has received the message
8	L7RSSI	Reception RSSI by the LAN modem of the INSTPING message transmitted by the device.
		Value in steps of 0.5dBm, from 0 (-147.5dBm) to 255 (-20dBm)

© 2020 - Copyright Wize Alliance & Alciom- All rights reserved

INSTPONG

Wize protocol in depth: Time and frequency management

- Time and carrier frequency adjustment though APP-ADMIN
- Allows to measure and correct long term drift of devices, thus keeping device cost low
- Carrier frequency : Absolute correction ; Time/clock : Absolute and drift correction

- Measurement made by gateway & LAN modem
- Correction algorithm either on head system or on device

Wize protocol in depth: Adaptative power and modulation control

- Wize supports static and dynamic configuration of device power and modulation rate
- Dynamic configuration implemented on the head end, through APP_ADMIN Optimize network capacity
- Automatic fallback to default setting if no downlink for a long time

© 2020 - Copyright Wize Alliance Marcian All rights reserved

Wize protocol in depth: OTA download (1/4)

- Specific multicast mechanism defined by Wize for other-the-air (OTA) software upgrades
- Four step process :

Head end decide :

- which devices must be upgraded
- which referent gateway & LAN modem to use
- Manufacturer splits the firmware in chunks of up to 210B

Downlink COMMAND_ANNDOWNLOAD message sent to each device (APP-ADMIN). Defines the appointments and provides Klog

At appointment time (several sessions) :

- All devices switch to receive mode simultaneously
- Head end ask gateway to broacast all chunks
- Devices gets some chunks...

When a device has got all chunks :

- Devices check the integrity of the firmware
- Then upgrades itself and sends a confirmation

© 2020 - Copyright Wize Alliance & Alciom- All rights reserved

Wize protocol in depth: OTA download (2/4)

- A very flexible mechanism, the head end can simply broadcast always the same content,
- or can optimize duty cycle and transmission windows

• Field tested by GRDF on tens of thousands of devices : 99 % successful updates the first night !

© 2020 - Copyright Wize Alliance & Alciom- All rights reserved

Wize protocol in depth: OTA download (3/4)

• Specific frame format and specific security for OTA download, maximizing performance

APP-DOWNLOAD

PRES-DOWNLOAD

Wize protocol in depth: OTA download (4/4)

• What is defined by the COMMAND_ANNDOWNLOAD message?

Byte	Description	Comments
1	L7CommandId	Fixed value \$30 ID COMMAND_ANNDOW NLOAD
2		Identification number of the software download sequence (the same ID is then used in the L2Dwnld field on effective download of the
3	L7DwnldId	software, see Erreur ! Source du renvoi introuvable.)
4		MSBs first
5		Encryption key used for software download
	L7Klog	
20		128 bits, MSBs first
21		Initial software version of the device
22	L/Swversionini	MSBs first
23	L7SwVersionTarget	Final software version of the device
24	3	MSBs first
25	L7MField	Indication of the device MANUFACTURER as per EN13757-4 (LSBs

27		Identification of the bardware version of the device		
28	L7DcHwld	MSB first		
29	L7BlocksCount	Number of software download blocks		
30				
31	L7Channelld	Identification of the software download channel (same coding as RF_UPLINK_CHANNEL parameter, see Regional Parameters document)		
		Identification of the modulation used for software download		
32	L7ModulationId	(same coding as RF_UPLINK_MOD parameter, see Regional Parameters document)		
33		First broadcasting date, encoded over 4 bytes as EPOCH. The device		
34	17DaveBrog	must check : Current epoch-(10x24x3600)<= L7DaysProg and		
35	LTDaysPlog	L7DaysProg <= Current_epoch+(60x24x3600). If not error is returned		
36				
37	L7DaysRepeat	Number of broadcasting days (From 1 to 15).		
38	L7DettaSec	Time between the transmission of the two data blocks from beginning to beginning in tele distribution, in seconds According to the value of parameter L7ModulationId : • The parameter of L7DeltaSec can take on a value of 10 to 255 to 2400 bauds, and of 5 to 255 to 4800 bauds • The recommended value of L7DeltaSec is of 10 (10 seconds) to 2400 bauds, and of 5 (5 seconds) to 4800 bauds		
39	HashSW	Integrity check of the complete software. This field is defined by the		
40		MANUFACTURER, transmitted in the software download notification		
41	1	the MANUFACTURER once all the blocks for a software download		
42		have been received		

Wize protocol in depth: Wize versions and future works

- Initial version (2017)
- Already including OTA, APP-INSTALL, adaptative control, security, ...

- Minor update and improvements (6/2019)
- Segmentation of the specification (core + regional parameters + application layers)
- Clarification of L6App and L6Netwld for easier interoperability and openess

In study and/or planned for next versions :

- Advanced uplink modulations for ultra-deep indoor (already field tested, 8dB improvement)
- Advanced downlink modulation and coding for deep indoor bidirectional links
- Virtual networks and extended roaming support with segmented security
- Better alignment with new EN13757 version (EN13757-4:2018)
- Walk-by/Drive-by support (trials planned for Q2 2021)

Agenda

- Introduction
- Some RF basics
- LPWAN concept
- RF European regulations
- The Wize Alliance
- Wize system architecture
- Wize protocol in depth
- Designing a Wize-compatible device
- Wize infrastructures and operators
- Synthesis : Wize vs LoRaWAN, NB-IoT or Sigfox
- Q&A

- Asymetrical hardware
- Integrated transceivers
- Wize protocol stacks
- Wize modules

<u>.</u>....

- And the antenna ?
- Wize design houses
- Off the shelf Wize products

Designing a Wize-compatible device: Asymetrical hardware

- Like all LPWAN and cellular networks, Wize hardware platforms are different for device and gateway
- Allows to maximize performance while reducing overall CAPEX

Tens to thousands of gateways

- Site acquisition and maintenance is key, so high performance is a must
- Installed on high points, so high immunity to blockers is critical
- Unit hw cost is less an issue
- Energy must be minimized but comes from the main

Thousands to millions of devices

- Unit hw cost is heavily critical, especially in metering
- Battery life is critical
- Performances should be adequate
- RF immunity is less an issue

Designing a Wize-compatible device: Integrated transceivers (1/2)

- Several low cost sub-GHz integrated transceivers are Wize compatible
- Some examples, already industrially tested (but others could be used too...):

Texas Instruments CC1120

Analog Devices ADF7030

Silicon Labs SI4460

2\$ to 4,50\$ (1000)

1,50\$ (1000)

Silicon	Labs
EFR32	FG14

• Dedicated 169MHz front-end amplifiers available (Skyworks)

Product 🗢	New 🗢	PDF ≑	RF Frequency (MHz)	Rx Insertion Loss (dB) Typ.	Rx Gain (dB) Typ. ◆	Tx Gain (dB) ≑	Rx NF (dB) Typ. ◆	Saturated Output Power (dBm) Typ.
SKY66121-11	NEW	PDF	169-170	0.9	TBD	TBD	TBD	31
SKY65367-11		PDF	169-170	0.7	-0.7	35	-0.7	30
SKY66100-11		POF	169-170	0.4	-0.5	30	-	24

© 2020 - Copyright Wize Alliance & Alciom- All rights reserved

Designing a Wize-compatible device: Integrated transceivers (2/2)

• Circuit design for Wize a marginaly more complex than 868MHz, due to higher transmit power. Example:

Designing a Wize-compatible device: Wize protocol stacks (1/2)

- Using an integrated transceiver « from scratch » : What about the Wize protocol stack (firmware)?
- Three options to date:

Designing a Wize-compatible device: Wize protocol stacks (2/2)

- Focus on the stack developped by SUEZ SMART SOLUTIONS, available now !
- Free licence (no royalty) options for maintenance services
- Based on a standard low cost SoC
- One metering product development at finalization stage, several generic product development on-going
- Demo board from SiLabs are available
- A development kit proposed soon

Designing a Wize-compatible device: Wize modules (1/2)

- Simpler solution for low to medium volume applications: Wize module from Radiocrafts, two variants
- RC1701HP-WIZE: Incl. core Wize stack, application layer on external MCU (UART link). No built-in OTA
- RC1702HP: Plaftorm module, could be customized to include Wize stack + application, incl OTA if needed

- Modules and evaluation kit off-the-shelf from Radiocrafts
- Arduino-compatible versions and evaluation kits also availabe from AllWize (RC1701 based)

Designing a Wize-compatible device: Wize modules (2/2)

- Wize'Up, open hardware module in development by ALCIOM
- Joint development with GRDF open source Wize stack
- No royalties, schematics & routing will available be under CERN OHL licence
- Assembled modules, eval board & design/customization services proposed by ALCIOM
- HW/SW integration and beta customers Q4 2020...

© 2020 - Copyright Wize Alliance & Alciom- All rights reserved

∂LCiOM

Designing a Wize-compatible device: Wize design houses

- Experienced design houses and end-to-end solution providers are member of the Wize Alliance
- Don't hesitate to ask for help for your projects...

Designing a Wize-compatible device: Off the shelf Wize products (1/2)

- Off-the-shelf or customizable Wize-enabled products are available from member of the Wize Alliance too
- Somes examples:

Sagemcom

Itron

DIEHL

Metering

 $\ensuremath{^\odot}$ 2020 - Copyright Wize Alliance & Alciom- All rights reserved

Designing a Wize-compatible device: Off the shelf Wize products (2/2)

• Example of a semi custom design by GRDF: The Universal Transmitter

- External or internal power supply
- External or internal antenna
- +27 dBm maximum Transmit power.
- Two TOR inputs and one outpout.
- Two 4-20 mV analog inputs.
- One 0-10 mv analog input.
- I2C Interface.
- 422/485 serial interface with Modbus support.
- One shock detector.
- Programmable by NFC.
- Option : QZSS, DGPS, SBAS,
- (WAAS/EGNOS/MSAS/GAGAN) support,
- ATEX Ready
- Open source Wize Stack

More information on www.wize-alliance.com

Document reference Version Date Author Author contact AL/RL/2015/006 1V June 11th, 2020 Robert Lacoste / ALCIOM contact@alciom.com